
Smart Contract Audit Report
for

SoonSwap

Version 1.0

Trustlook Blockchain Labs

Email: bd@trustlook.com

Project Overview

Project Name SoonSwap

Contract codebase N/A

Platform EVM compatible blockchains

Language Solidity

Submission Time 2023.04.26

Report Overview

Report ID TBL_20230426_00

Version 1.0

Reviewer Trustlook Blockchain Labs

Starting Time 2023.04.26

Finished Time 2023.05.05

@ Copyright 2023 Trustlook - All rights reserved

Disclaimer

Trustlook audit reports do not provide any warranties or guarantees on the
vulnerability-free nature of the given smart contracts, nor do they provide any indication
of legal compliance. The Trustlook audit process is aiming to reduce the high level risks
possibly implemented in the smart contracts before the issuance of audit reports.
Trustlook audit reports can be used to improve the code quality of smart contracts and
are not able to detect any security issues of smart contracts that will occur in the future.
Trustlook audit reports should not be considered as financial investment advice.

@ Copyright 2023 Trustlook - All rights reserved

About Trustlook Blockchain Labs

Trustlook Blockchain Labs is a leading blockchain security team with a goal of security
and vulnerability research on current blockchain ecosystems by offering
industry-leading smart contracts auditing services. Please contact us for more
information at (https:/www.trustlook.com/services/smart.html) or Email
(bd@trustlook.com)

The Trustlook blockchain laboratory has established a complete system test
environment and methods.

Black-box Testing The tester has no knowledge of the system being
attacked. The goal is to simulate an external hacking or
cyber warfare attack.

White-box Testing Based on the level of the source code, test the control
flow, data flow, nodes, SDK etc. Try to find out the
vulnerabilities and bugs.

Gray-box Testing Use Trustlook customized script tools to do the security
testing of code modules, search for the defects if any
due to improper structure or improper usage of
applications.

@ Copyright 2023 Trustlook - All rights reserved

https://www.trustlook.com/services/smart.html
mailto:bd@trustlook.com

Introduction

By reviewing the smart contract’s implementation, this audit report has been prepared to
discover potential issues and vulnerabilities of their source code. We outline in the
report about our approach to evaluate the potential security risks. Advice to further
improve the quality of security or performance is also given in the report.

About SoonSwap

SoonSwap is a decentralized NFT marketplace with Limit order & AMM pool model &
Farm to enable more NFTs to circulate in real-time.

@ Copyright 2023 Trustlook - All rights reserved

About Methodology

To evaluate the potential vulnerabilities or issues, we go through a checklist of
well-known smart contracts related security issues using automatic verification tools and
manual review. To discover potential logic weaknesses or project specific
implementations, we thoroughly discussed with the team to understand the business
model and reduce the risk of unknown vulnerabilities. For any discovered issue, we
might test it on our private network to reproduce the issue to prove our findings.

The checklist of items is shown in the following table:

Category Type ID Name Description

Coding
Specification

CS-01 ERC Standards The contract is using ERC standards.

CS-02 Compiler Version The compiler version should be specified.

CS-03 Constructor Mismatch The constructor syntax is changed with Solidity versions. Need extra
attention to make the constructor function right.

CS-04 Return standard Following the ERC20 specification, the transfer and approve
functions should return a bool value, and a return value code needs
to be added.

CS-05 Address(0) Validation It is recommended to add the verification of require(_to!=address(0))
to effectively avoid unnecessary loss caused by user misuse or
unknown errors.

CS-06 Unused or unnecessary
Variables

Unused variables should be removed.

CS-07 Untrusted Libraries The contract should avoid using untrusted libraries, or the libraries
need to be thoroughly audited too.

CS-08 Event Standard Define and use Event appropriately

CS-09 Safe Transfer Using safeTransfer/transfer to send funds instead of send.

CS-10 Gas Consumption Optimize the code for better gas consumption.

CS-11 Deprecated Uses Avoid using deprecated functions.

CS-12 Sanity Checks Sanity checks when setting key parameters in the system

CS-13 Typo Typo in comments or code

CS-14 Fallback Function Splitting fallback and receive function

CS-15 Comment Standard Use clear consistent comments with code semantics

@ Copyright 2023 Trustlook - All rights reserved

CS-16 Naming Standard Use standard method to name functions and variables

Coding
Security

SE-01 Integer overflows Integer overflow or underflow issues.

SE-02 Reentrancy Avoid using calls to trade in smart contracts to avoid reentrancy
vulnerability.

SE-03 Transaction Ordering
Dependence

Avoid transaction ordering dependence vulnerability.

SE-04 Tx.origin usage Avoid using tx.origin for authentication.

SE-05 Fake recharge The judgment of the balance and the transfer amount needs to use
the “require function”.

SE-06 Replay If the contract involves the demands for entrusted management,
attention should be paid to the non-reusability of verification to avoid
replay attacks.

SE-07 External call checks For external contracts, pull instead of push is preferred.

SE-08 Weak random The method of generating random numbers on smart contracts requires
more considerations.

Additional
Security

AS-01 Access control Well defined access control for functions.

AS-02 Authentication
management

The authentication management is well defined.

AS-03 Semantic Consistency Semantics are consistent.

AS-04 Functionality checks The functionality is well implemented.

AS-05 Business logic review The business model logic is implemented correctly.

The severity level of the issues are described in the following table:

Severity Description

Critical The issue will result in asset loss or data manipulations.

High The issue will seriously affect the correctness of the business
model.

Medium The issue is still important to fix but not practical to exploit.

Low The issue is mostly related to outedate, unused code snippets.

Informational This issue is mostly related to code style, informational
statements and is not mandatory to be fixed.

@ Copyright 2023 Trustlook - All rights reserved

Audit Results

The Trustlook security team has used the team's analysis tools and manual audit
process to audit the project. One security concern was identified during the audit. There
are also some comments and some enhancement suggestions in the following sections.

Scope

Following files have been scanned by our internal audit tool and manually reviewed and tested
by our team:

File names Sha1

SoonPair.sol b0b9bfa28d92a3b482aaa9afda63a0eae612e5ac

SoonswapOrderCenter.sol 89a63265ea2afcc9c0fc231bead86746c3a42e1a

utils/TreeUtils.sol eac91393f83b7540c3b7de02c033dc298417ffdd

@ Copyright 2023 Trustlook - All rights reserved

Summary

Issue ID Severity Location Type ID Status

TBL_SCA_001 LOW SoonPair.sol:47 CS-12 Fixed

TBL_SCA_002 LOW SoonPair.sol:17
SoonPair.sol:18
SoonPair.sol:22

CS-06 Fixed

TBL_SCA_003 LOW SoonswapOrderCenter.sol: 403 CS-06 Fixed

TBL_SCA_004 LOW SoonswapOrderCenter.sol: 174 AS-03 Fixed

TBL_SCA_005 INFO SoonPair.sol
SoonswapOrderCenter.sol

CS-15 Fixed

@ Copyright 2023 Trustlook - All rights reserved

Details

• ID: TBL_SCA-001

• Severity: Low

• Type: CS-12 (Sanity Checks)

• Description:

It is recommended to validate parameter _swapFeeTo to be less than 1000 before the
assignment in the function initialize(). A value bigger than 1000 will cause integer underflow
conditions in function trading() when calculating the value of _price.

• Remediation:

This has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-002

• Severity: LOW

• Type: CS-06 (Unused or unnecessary Variables)

• Description:

The variables token0, token1 and bilateral are defined but not necessary to be used in
the business logic.

It is recommended to remove these variables and related “require” statements.

require(token0 == feeToken, 'Soonswap: TOKEN0_NOT_IS_FEETOKEN');
require(token0 == nftContract, 'Soonswap: TOKEN0_NOT_IS_NFTCONTRACT');

• Remediation:

token1 and bilateral have been removed in a new release. The token0 has been kept as
is for code compatibility.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-003

• Severity: LOW

• Type: CS-06 (Unused or unnecessary Variables)

• Description:

The variable user is not necessary to be used in the function

It is recommended to remove the variable and related code.

if(user==address(0)){
user = _buyOrders[j].user;

}

• Remediation:

This has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-004

• Severity: LOW

• Type: AS-03 (Semantic Consistency)

• Description:

The variable order.pair is passed as the address from in the Trading structure.
Therefore, in the function trading(). The event tradingEvent() will log the SoonPair contract
address as the seller information. However, the information of the original seller is more helpful
for tracking the order information, since all token and NFT tokens are transferred from the
SoonPair smart contract.

It is recommended to change the order.pair as order.user.

• Remediation:

This has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-005

• Severity: INFO

• Type: CS-15 (Comment Standard)

• Description:

Good code comments can help code maintenance much easier. It is recommended to
provide informative comments for these smart contracts.

• Remediation:

This has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

